_
-
Ω
-
_
α
Ν
0
Q
2
_
⊐
d
₹
3
>
2
~
α
-
+
\Box

STUDY MODULE D	ESCRIPTION FORM	
Name of the module/subject Linear algebra with analytic geometry		Code 1010341721010342811
Field of study Mathematics in Technology	Profile of study (general academic, practical) general academic	Year /Semester
Elective path/specialty	Subject offered in: Polish	Course (compulsory, elective) obligatory
Cycle of study:	Form of study (full-time,part-time)	
First-cycle studies	full-time	
(Polish Qualifications Framework level six)		
No. of hours Lecture: 30 Classes: 30 Laboratory: -	Project/seminars:	No. of credits 5
Status of the course in the study program (Basic, major, other) Basic	(university-wide, from another field) university-wide	
Education areas and fields of science and art		ECTS distribution (number and %)
The sciences		5 100%
Mathematical sciences		5 100%
Responsible for subject / lecturer:		

dr hab. inż. Paweł Kolwicz email: pawel.kolwicz@put.poznan.pl

tel. 61 665 2802

Faculty of Electrical Engineering ul. Piotrowo 3A 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Basic knowledge with range of secondary school and of linear algebra and analytic geometry (1 semester of studies) [K_W01 (P6S_WG), K_W03 (P6S_WG)]
2	Skills	The skills of applying matrix calculus, solving systems of linear equations, using the vector algebra in analytic geometry, applying basic notions of the theory of linear spaces and linear operators [K_U01 (P6S_UW)]
3	Social competencies	He has consciousness of need of broadening his competences, readiness to undertaking of co-operation [K_K01 (P6S_KK), K_K02 (P6S_KK)]]

Assumptions and objectives of the course:

To be able to check the determinateness of square form (bilinear form). To recognize basic notions of the space with the inner product (in particular the notion of orthogonal basis). To recognize the curves as well as surfaces of second degree. To be aware of chosen elements of differential geometry of curves.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. explain notions of bilinear (quadratic) form, the matrix of form, the notion of inner product, orthogonal basis, curve (surface) of second degree, the osculating circle [K_W01 (**P6S_WG**), K_W03 (**P6S_WG**)]
- 2. understand ideas and proofs of more important selected theorems [K_W01 (P6S_WG), K_W03 (P6S_WG)]

Skills:

- 1. find matrices of quadratic (bilinear) forms, study determinateness of quadratic forms, calculate inner product and norm in the respective space [K_U01 (**P6S_UW**)]
- 2. apply theorems concerning determining curves and surfaces of second degree, find the equation of osculating circle [K_U01 ((**P6S_UW**))]

Social competencies:

- 1. can think and behave in good mathematical manner in the area of linear algebra analitical geometry [K_K01 (P6S_KK)]
- 2. knows the limitation of own knowledge and understand the need of more far education and the necessity of systematic work $[K_K02 (P6S_KK)]$

Assessment methods of study outcomes

Faculty of Electrical Engineering

The lecture:

-written exam concerning mainly the theoretic part of the subject.

Classes:

evaluation of written tests and the direct activity during the classes (solving problems and preparing of reports)

- -continuous evaluation during each meeting taking into account the activity in discussion and in cooperation concerning practical exercises.
- -continuous evaluation during each meeting,
- -getting extra points related with activity, in partucular presenting reports concerning applications of theory in different branches or putting the theory in history of mathematics,
- -notes concerning the improvement of basic materials,
- -active participation in consultations.

Course description

Actualization date 1.10.2018.

Bilinear and quadratic forms, the matrices of forms, definiteness of a square forms. Spaces with inner product. Algebraic curves and surfaces of second degree, surfaces of revolution. Elements of differential geometry of curves.

The applied methods of education:

- -lectures
- 1. lecture led in interactive way with questions formulating to group,
- 2. the students' activity is taken into account during the final evaluation (the preparation of historical reports connected with the mathematicians' related to material, presenting the proofs leaving to independent making),
- 3. in track of lecture initiating the discussion,
- 4. theory presented with connections of current knowledge from previous lectures.
- -classes
- 1. solving on board example tasks
- 2. detailed the reviewing by leader the solutions of tasks of practice and the discussions over comments.

Basic bibliography:

- 1. A. I. Kostrykin, Wstęp do algebry, cz.1 Podstawy algebry, PWN, Warszawa 2004.
- 2. A. I. Kostrykin, Wstęp do algebry, cz.2 Algebra liniowa, PWN, Warszawa 2004.
- 3. A. I. Kostrykin, Zbiór zadań z algebry, PWN, Warszawa 2005.
- 4. M. Grzesiak, Liczby zespolone i algebra liniowa, Poznań 1999.
- 5. T. Jurlewicz, Z. Skoczylas, Algebra liniowa 1, Wrocław 2003.
- 6. T. Jurlewicz, Z. Skoczylas, Algebra liniowa 2, Wrocław 2005.
- 7. F. Leja, Geometria analityczna, PWN, Warszawa 1954.

Additional bibliography:

1. H. Arodź, K. Rościszowski, Zbiór zadań z algebry i geometrii analitycznej dla fizyków, PWN 1990.

Result of average student's workload

Activity	Time (working hours)
Active participation in meetings (classes)	30
2. Active participation in meetings (lectures)	30
3. Active participation in consultations with posing questions	10
4. preparing to classes	18
5. preparing to tests	15
6. the introduction with indicated literature / the didactic materials (10 sides of scientific text = 1 godz.)	10
7. preparing to exam and attending to the exam	12

Student's workload

Source of workload	hours	ECTS
Total workload	125	5
Contact hours	70	3
Practical activities	55	2